The Noisy Image and the Regulariser and Me

Seb Scott

Supervised by Matthias J. Ehrhardt and Silvia Gazzola

Noisy Images

We want

We have

y

Given y, find (an approximation of) x^*

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} L(x, y)$$

Given y, find (an approximation of) x^* $\hat{x} = \arg \min \frac{1}{2} ||x - y||_2^2$ \mathcal{X} Q: What should *L* be? Candidate: $L(x, y) = \frac{1}{2} ||x - y||_2^2$

Data-fit: Reconstruction is similar to noisy data

Given y, find (an approximation of) x^*

$$\hat{x} = \underset{x}{\operatorname{arg\,min}} \frac{1}{2} \|x - y\|_2^2$$

Q: What should L be?

Given y, find (an approximation of) x^*

$$\hat{x} = \mathop{\arg\min}_{x} L(x,y)$$

Q: What should L be?

Candidate: $L(x, y) = \frac{1}{2} ||x - y||_2^2 + ?$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg \min_{x} L(x, y)$$

What should *L* be?
$$x$$
Candidate:
$$L(x, y) = \frac{1}{2} ||x - y||_{2}^{2} + \alpha R(x)$$
Regulariser: Penalises a noisy image

Outline of Talk

Given y, find (an approximation of) x^* $\hat{x} = \arg \min_{x} \frac{1}{2} ||x-y||_2^2 + \alpha R(x)$ Q: Good choice of R? Q: How to choose α

- Examples
- General properties

- Good choice matters
- Finding a good choice

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$
Sood choice of R?
$$x^{\star}$$
Q: How to choose α

X

October 6th 2022

Q:

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$
Sood choice of *R*?
$$x^{*}$$
Q: How to choose α

X

2-norm squared $R(x) = ||x||_2^2 = \sum_i |x_i|^2$

October 6th 2022

Q: 6

Given y, find (an approximation of) x^*

Given y, find (an approximation of) x^*

$$\hat{x} = \arg \min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$

$$: \text{Good choice of } R?$$

$$x^{\star}$$

$$y$$

$$\text{Q: How to choose } \alpha$$

1-norm $R(x) = ||x||_1 = \sum_i |x_i|$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + 0.01 \|x\|_{1}$$

$$\therefore \text{ Good choice of } R?$$

$$\frac{x^{*}}{y} = \frac{y}{\hat{x}}$$

$$(2: \text{ How to choose } \alpha)$$

$$\hat{x}$$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$
Q: Good choice of R?
Q: How to choose α

X

Total Variation (TV) $R(x) = TV(x) = \|\nabla x\|_1$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + 0.01 TV(x)$$

$$x = x \quad x \quad Q: \text{ How to choose } \alpha$$

$$x^{\star} \quad y \quad \hat{x}$$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg \min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$
Q: Good choice of R?
$$x^{\star} \qquad v$$
Q: How to choose a

Indicator function $R(x) = \iota_C(x)$

$$=\begin{cases} 0 & x \in C \\ +\infty & x \notin C \end{cases}$$

Given y, find (an approximation of) x^*

$$\hat{x} = \arg\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + 0.01\iota_{[0,255]}(x)$$

$$x$$
Q: Good choice of R?
$$x^{\star} \qquad y \qquad \hat{x}$$
Q: How to choose α

$$\hat{x}$$

Outline of Talk (revisited)

Given y, find (an approximation of) x^* $\hat{x} = \underset{x}{\operatorname{arg min}} \frac{1}{2} ||x-y||_2^2 + \alpha R(x)$ Q: Good choice of R? Q: How to choose α

- Examples
- General properties

- Good choice matters
- Finding a good choice

Consider R(x) that is: Bounded Below,

Consider R(x) that is: Bounded Below, Proper,

Consider R(x) that is: Bounded Below, Proper, Convex,

Consider R(x) that is: Bounded Below, Proper, Convex, Lower semi-continuous

Given $\alpha \ge 0$ and R(x) that is Bounded Below, Proper, Convex, Lower semi-continuous Then

$$\hat{x} = \arg \min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$$
exists and is unique

Q: How to choose the regularisation parameter α

Choice of α matters

 $\alpha = 0.01$

 χ^{\star}

$\alpha = 0.10$

y

 $\alpha = 1.00$

October 6th 2022

 $\hat{x}(\alpha)$

TASK: Find parameter $\hat{\alpha}$ such that $\hat{x}(\hat{\alpha}) = \arg \min_{x} \frac{1}{2} ||x-y||_{2}^{2} + \hat{\alpha} R(x)|$ is close to x^{\star}

Bilevel Optimisation

$$\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$$

$$\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^{\star}\|_{2}^{2}$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^{\star}\|_{2}^{2}$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \alpha R(x)$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

 $R(x) = ||x||_2^2$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

$$R(x) = ||x||_2^2$$
$$\hat{\alpha} = 0.127$$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

$$R(x) = ||x||_2^2$$
$$\hat{\alpha} = 0.127$$
$$\hat{\alpha} = 0$$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

 $R(x) = ||x||_2^2$ $\hat{\alpha} = 0.127$ $\hat{\alpha} = 0$ $\hat{\alpha} = +\infty$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

> $R(x) = \|x\|_2^2$ Heatmap of $\hat{\alpha}$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

> $R(x) = \|x\|_2^2$ Heatmap of $\log_{10} \hat{\alpha}$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

> $R(x) = \|x\|_2^2$ Heatmap of $\log_{10} \hat{\alpha}$

Generally believed that $R(y) > R(x^*) \implies \hat{\alpha} > 0$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

> $R(x) = \|x\|_2^2$ Heatmap of $\log_{10} \hat{\alpha}$

Generally believed that $R(y) > R(x^*) \Rightarrow \hat{\alpha} > 0$

Bilevel Optim: $\hat{\alpha} = \arg \min_{\alpha} \frac{1}{2} \|\hat{x}(\alpha) - x^*\|_2^2$ $\hat{x}(\alpha) = \arg \min_{x} \frac{1}{2} \|x - y\|_2^2 + \alpha R(x)$

Have done:

If R(x) is bounded below, proper, convex, lower semicontinuous and $\dot{\alpha} > 0$ s.t. $R(x(\dot{\alpha})) > R(x^*)$ then $\hat{\alpha} > 0$

Want to do:

If R(x) is bounded below, proper, convex, lower semicontinuous and

 $R(y) > R(x^{\star})$ then $\hat{\alpha} > 0$

Generally believed that $R(y) > R(x^*) \implies \hat{\alpha} > 0$

Conclusions

Summary

Denoise images by solving

$$\hat{x} = \arg \min_{x} \frac{1}{2} ||x - y||_{2}^{2} + \alpha R(x)$$

- Bilevel optimisation to find optimal $\hat{\alpha}$
- Seems like $R(y) > R(x^*) \implies \hat{\alpha} > 0$

Future work

- Prove the thing!
- Finite $\hat{\alpha}$?

Conclusions

Summary

Denoise images by solving

$$\hat{x} = \arg \min_{x} \frac{1}{2} ||x - y||_{2}^{2} + \alpha R(x)$$

- Bilevel optimisation to find optimal $\hat{\alpha}$
- Seems like $R(y) > R(x^*) \implies \hat{\alpha} > 0$

Future work

- Prove the thing!
- Finite $\hat{\alpha}$?

Thank you!