The Noisy Image and the Regulariser and Me

Seb Scott

Supervised by Matthias J. Ehrhardt and Silvia Gazzola

Noisy Images

We want

We have

y

How to Denoise Images

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min L(x, y)
$$

Q: What should L be?

How to Denoise Images

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}
$$

Q: What should L be?
x

Candidate:

$$
L(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}
$$

Data-fit: Reconstruction is similar to noisy data

How to Denoise Images

Given y, find (an approximation of) x^{\star}

$$
\widehat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}
$$

Q: What should L be?

How to Denoise Images

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min L(x, y)
$$

Q: What should L be? x
Candidate:

$$
L(x, y)=\frac{1}{2}\|x-y\|_{2}^{2}+?
$$

How to Denoise Images

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min L(x, y)
$$

Q: What should L be?
x

Candidate:
Regularisation Parameter: Weighs how important $R(x)$ is

Regulariser: Penalises a noisy image

Outline of Talk

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
Q: How to choose α

- Examples
- General properties
- Good choice matters
- Finding a good choice

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
Q: How to choose α

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
x

Q: How to choose α

$$
\begin{aligned}
& \text { 2-norm squared } \\
& R(x)=\|x\|_{2}^{2}=\sum_{i}\left|x_{i}\right|^{2}
\end{aligned}
$$

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+0.01\|x\|_{2}^{2}
$$

Q: Good choice of R ?

October 6th 2022

Q: How to choose α

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?

Q: How to choose α

1-norm

$$
R(x)=\|x\|_{1}=\sum_{i}\left|x_{i}\right|
$$

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\widehat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+0.01\|x\|_{1}
$$

Q: Good choice of R ?

Q: How to choose α

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
x

Q: How to choose α

$$
\begin{aligned}
& \text { Total Variation (TV) } \\
& R(x)=T V(x)=\|\nabla x\|_{1}
\end{aligned}
$$

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+0.01 T V(x)
$$

Q: Good choice of R ?

Q: How to choose α

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
x

Q: How to choose α

Indicator function

$$
\begin{aligned}
& R(x)=\iota_{C}(x) \\
= & \begin{cases}0 & x \in C \\
+\infty & x \notin C\end{cases}
\end{aligned}
$$

Examples of Regularisers $R(x)$

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+0.01 \iota_{[0,255]}(x)
$$

Q: Good choice of R ?

Q: How to choose α

Outline of Talk (revisited)

Given y, find (an approximation of) x^{\star}

$$
\hat{x}=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

Q: Good choice of R ?
Q: How to choose α

- Examples
- General properties
- Good choice matters
- Finding a good choice

Properties of Regularisers $R(x)$

Consider $R(x)$ that is:
Bounded Below,

Properties of Regularisers $R(x)$

Consider $R(x)$ that is:
Bounded Below, Proper,

Properties of Regularisers $R(x)$

Consider $R(x)$ that is:
Bounded Below, Proper, Convex,

Properties of Regularisers $R(x)$

Consider $R(x)$ that is:
Bounded Below, Proper, Convex, Lower semi-continuous

$$
0-\cdot-\cdot \cdot+\infty
$$

Properties of Regularisers $R(x)$

Given $\alpha \geq 0$ and $R(x)$ that is
Bounded Below, Proper, Convex, Lower semi-continuous Then

$$
\hat{x}=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

exists and is unique

> Q: How to choose the regularisation parameter α

Choice of α matters

October 6th 2022

Finding a good α

TASK: Find parameter $\hat{\alpha}$ such that $\hat{x}(\hat{\alpha})=\underset{x}{\arg \min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+\widehat{\alpha} R(x)}$ is close to x^{\star}

Finding a good α

Finding a good α

Bilevel Optimisation

$\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$
$\hat{x}(\alpha)=\underset{x}{\arg } \min _{2}^{\alpha} \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$

Finding a good α

Bilevel Optimisation

$$
\begin{gathered}
\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2} \\
\hat{x}(\alpha)=\underset{x}{\arg \min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+\underbrace{\alpha} R(x)} .
\end{gathered}
$$

Want $\alpha>0$

Positivity of $\hat{\alpha}$

Bilevel Optim:
 $\hat{\alpha}=\arg \min \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\widehat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
 x

Positivity of $\hat{\alpha}$

Bilevel Optim:
 $\hat{\alpha}=\arg \min \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\widehat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
 x

Positivity of $\hat{\alpha}$

Bilevel Optim:
$\hat{\alpha}=\arg \min \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\widehat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$ x
$$
R(x)=\|x\|_{2}^{2}
$$

Positivity of $\hat{\alpha}$

$$
\begin{gathered}
\text { Bilevel Optim: } \\
\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2} \\
\hat{x}(\alpha)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x) \\
R(x)=\|x\|_{2}^{2} \\
\hat{\alpha}=0.127
\end{gathered}
$$

Positivity of $\hat{\alpha}$

$$
\begin{gathered}
\text { Bilevel Optim: } \\
\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2} \\
\hat{x}(\alpha)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x) \\
R(x)=\|x\|_{2}^{2} \\
\hat{\alpha}=0.127 \\
\hat{\alpha}=0
\end{gathered}
$$

Positivity of $\hat{\alpha}$

$$
\begin{gathered}
\text { Bilevel Optim: } \\
\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2} \\
\hat{x}(\alpha)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x) \\
R(x)=\|x\|_{2}^{2} \\
\hat{\alpha}=0.127 \\
\hat{\alpha}=0 \\
\hat{\alpha}=+\infty
\end{gathered}
$$

Positivity of $\hat{\alpha}$

Bilevel Optim:
 $\hat{\alpha}=\arg \min \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\hat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
 $$
x
$$
 $$
R(x)=\|x\|_{2}^{2}
$$
 Heatmap of $\hat{\alpha}$

Positivity of $\hat{\alpha}$

Bilevel Optim:
$\hat{\alpha}=\arg \min \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\widehat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
$$
x
$$
$$
R(x)=\|x\|_{2}^{2}
$$
Heatmap of $\log _{10} \hat{\alpha}$

Positivity of $\hat{\alpha}$

Bilevel Optim:
 $\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\widehat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
 $$
x
$$
 $$
R(x)=\|x\|_{2}^{2}
$$

Generally believed that $R(y)>R\left(x^{\star}\right) \Rightarrow \hat{\alpha}>0$

Positivity of $\hat{\alpha}$

Bilevel Optim:

$\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$ $\hat{x}(\alpha)=\arg \min \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$ x
$R(x)=\|x\|_{2}^{2}$ Heatmap of $\log _{10} \hat{\alpha}$

Generally believed that $R(y)>R\left(x^{\star}\right) \Rightarrow \hat{\alpha}>0$

Positivity of $\hat{\alpha}$

Bilevel Optim:

$\hat{\alpha}=\underset{\alpha}{\arg \min } \frac{1}{2}\left\|\hat{x}(\alpha)-x^{\star}\right\|_{2}^{2}$
$\hat{x}(\alpha)=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)$
x

Generally believed that $R(y)>R\left(x^{\star}\right) \Rightarrow \hat{\alpha}>0$

Have done:

If $R(x)$ is bounded below, proper, convex, lower semicontinuous and $\dot{\alpha}>0$ s.t.

$$
R\left(x\left(\alpha^{\prime}\right)\right)>R\left(x^{\star}\right)
$$

then $\hat{\alpha}>0$

Want to do:

If $R(x)$ is bounded below, proper, convex, lower semicontinuous and

$$
R(y)>R\left(x^{\star}\right)
$$

then $\hat{\alpha}>0$

Conclusions

Summary

- Denoise images by solving

$$
\hat{x}=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

- Bilevel optimisation to find optimal $\hat{\alpha}$
- Seems like

$$
R(y)>R\left(x^{\star}\right) \Rightarrow \hat{\alpha}>0
$$

Future work

- Prove the thing!
- Finite $\hat{\alpha}$?

Conclusions

Summary

- Denoise images by solving

$$
\hat{x}=\underset{x}{\arg \min } \frac{1}{2}\|x-y\|_{2}^{2}+\alpha R(x)
$$

- Bilevel optimisation to find optimal $\hat{\alpha}$
- Seems like

$$
R(y)>R\left(x^{\star}\right) \Rightarrow \hat{\alpha}>0
$$

Future work

- Prove the thing!
- Finite $\hat{\alpha}$?

